Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 19(2): e0299114, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38408048

RESUMO

Analyzed endometrial cancer (EC) genomes have allowed for the identification of molecular signatures, which enable the classification, and sometimes prognostication, of these cancers. Artificial intelligence algorithms have facilitated the partitioning of mutations into driver and passenger based on a variety of parameters, including gene function and frequency of mutation. Here, we undertook an evaluation of EC cancer genomes deposited on the Catalogue of Somatic Mutations in Cancers (COSMIC), with the goal to classify all mutations as either driver or passenger. Our analysis showed that approximately 2.5% of all mutations are driver and cause cellular transformation and immortalization. We also characterized nucleotide level mutation signatures, gross chromosomal re-arrangements, and gene expression profiles. We observed that endometrial cancers show distinct nucleotide substitution and chromosomal re-arrangement signatures compared to other cancers. We also identified high expression levels of the CLDN18 claudin gene, which is involved in growth, survival, metastasis and proliferation. We then used in silico protein structure analysis to examine the effect of certain previously uncharacterized driver mutations on protein structure. We found that certain mutations in CTNNB1 and TP53 increase protein stability, which may contribute to cellular transformation. While our analysis retrieved previously classified mutations and genomic alterations, which is to be expected, this study also identified new signatures. Additionally, we show that artificial intelligence algorithms can be effectively leveraged to accurately predict key drivers of cancer. This analysis will expand our understanding of ECs and improve the molecular toolbox for classification, diagnosis, or potential treatment of these cancers.


Assuntos
Neoplasias do Endométrio , Neoplasias , Feminino , Humanos , Inteligência Artificial , Neoplasias do Endométrio/genética , Neoplasias do Endométrio/patologia , Neoplasias/patologia , Genômica , Algoritmos , Mutação , Nucleotídeos , Claudinas/genética
2.
Cancers (Basel) ; 15(18)2023 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-37760409

RESUMO

Homologous recombination (HR) is the major mechanism of rescue of stalled replication forks or repair of DNA double-strand breaks (DSBs) during S phase or mitosis. In human cells, HR is facilitated by the BRCA2-BRCA1-PALB2 module, which loads the RAD51 recombinase onto a resected single-stranded DNA end to initiate repair. Although the process is essential for error-free repair, unrestrained HR can cause chromosomal rearrangements and genome instability. F-box DNA Helicase 1 (FBH1) antagonizes the role of BRCA2-BRCA1-PALB2 to restrict hyper-recombination and prevent genome instability. Here, we analyzed reported FBH1 mutations in cancer cells using the Catalogue of Somatic Mutations in Cancers (COSMIC) to understand how they interact with the BRCA2-BRCA1-PALB2. Consistent with previous results from yeast, we find that FBH1 mutations co-occur with BRCA2 mutations and to some degree BRCA1 and PALB2. We also describe some co-occurring mutations with RAD52, the accessory RAD51 loader and facilitator of single-strand annealing, which is independent of RAD51. In silico modeling was used to investigate the role of key FBH1 mutations on protein function, and a Q650K mutation was found to destabilize the protein structure. Taken together, this work highlights how mutations in several DNA damage repair genes contribute to cellular transformation and immortalization.

3.
Int J Mol Sci ; 24(7)2023 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-37047013

RESUMO

Arginine methylation is a form of posttranslational modification that regulates many cellular functions such as development, DNA damage repair, inflammatory response, splicing, and signal transduction, among others. Protein arginine methyltransferase 5 (PRMT5) is one of nine identified methyltransferases, and it can methylate both histone and non-histone targets. It has pleiotropic functions, including recruitment of repair machinery to a chromosomal DNA double strand break (DSB) and coordinating the interplay between repair and checkpoint activation. Thus, PRMT5 has been actively studied as a cancer treatment target, and small molecule inhibitors of its enzymatic activity have already been developed. In this report, we analyzed all reported PRMT5 mutations appearing in cancer cells using data from the Catalogue of Somatic Mutations in Cancers (COSMIC). Our goal is to classify mutations as either drivers or passengers to understand which ones are likely to promote cellular transformation. Using gold standard artificial intelligence algorithms, we uncovered several key driver mutations in the active site of the enzyme (D306H, L315P, and N318K). In silico protein modeling shows that these mutations may affect the affinity of PRMT5 for S-adenosylmethionine (SAM), which is required as a methyl donor. Electrostatic analysis of the enzyme active site shows that one of these mutations creates a tunnel in the vicinity of the SAM binding site, which may allow interfering molecules to enter the enzyme active site and decrease its activity. We also identified several non-coding mutations that appear to affect PRMT5 splicing. Our analyses provide insights into the role of PRMT5 mutations in cancer cells. Additionally, since PRMT5 single molecule inhibitors have already been developed, this work may uncover future directions in how mutations can affect targeted inhibition.


Assuntos
Neoplasias , Proteína-Arginina N-Metiltransferases , Humanos , Proteína-Arginina N-Metiltransferases/metabolismo , Inteligência Artificial , Histonas/metabolismo , Neoplasias/genética , Mutação , Arginina/metabolismo
4.
MicroPubl Biol ; 20222022.
Artigo em Inglês | MEDLINE | ID: mdl-36247322

RESUMO

SLC6A4 is a serotonin re-uptake transporter which has been a target for anti-depressant therapies but recently some mutations have been described in cancer cells. Here, we characterize mutations in SLC6A4 that appear in cancer cells. We employed several validated computational and artificial intelligence algorithms to characterize the mutations. We identified a previously uncharacterized G100V mutation in lung cancers. In sillico structural analysis reveals that this mutation may affect SLC6A4 ligand binding and subsequently its function. We also identified several other mutations that may affect the structure of the protein. This preliminary analysis highlights the role of SLC6A4 in human cancers.

5.
PLoS One ; 17(9): e0273736, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36107942

RESUMO

In human cells homologous recombination (HR) is critical for repair of DNA double strand breaks (DSBs) and rescue of stalled or collapsed replication forks. HR is facilitated by RAD51 which is loaded onto DNA by either BRCA2-BRCA1-PALB2 or RAD52. In human culture cells, double-knockdowns of RAD52 and genes in the BRCA1-BRCA2-PALB2 axis are lethal. Mutations in BRCA2, BRCA1 or PALB2 significantly impairs error free HR as RAD51 loading relies on RAD52 which is not as proficient as BRCA2-BRCA1-PALB2. RAD52 also facilitates Single Strand Annealing (SSA) that produces intra-chromosomal deletions. Some RAD52 mutations that affect the SSA function or decrease RAD52 association with DNA can suppress certain BRCA2 associated phenotypes in breast cancers. In this report we did a pan-cancer analysis using data reported on the Catalogue of Somatic Mutations in Cancers (COSMIC) to identify double mutants between RAD52 and BRCA1, BRCA2 or PALB2 that occur in cancer cells. We find that co-occurring mutations are likely in certain cancer tissues but not others. However, all mutations occur in a heterozygous state. Further, using computational and machine learning tools we identified only a handful of pathogenic or driver mutations predicted to significantly affect the function of the proteins. This supports previous findings that co-inactivation of RAD52 with any members of the BRCA2-BRCA1-PALB2 axis is lethal. Molecular modeling also revealed that pathogenic RAD52 mutations co-occurring with mutations in BRCA2-BRCA1-PALB2 axis are either expected to attenuate its SSA function or its interaction with DNA. This study extends previous breast cancer findings to other cancer types and shows that co-occurring mutations likely destabilize HR by similar mechanisms as in breast cancers.


Assuntos
Neoplasias da Mama , Genes BRCA2 , Proteína BRCA1/genética , Proteína BRCA2/genética , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , DNA , Reparo do DNA , Proteína do Grupo de Complementação N da Anemia de Fanconi/genética , Feminino , Humanos , Mutação , Proteína Rad52 de Recombinação e Reparo de DNA/genética
6.
Cancers (Basel) ; 13(17)2021 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-34503108

RESUMO

Gliomas are differentiated into two major disease subtypes, astrocytoma or oligodendroglioma, which are then characterized as either IDH (isocitrate dehydrogenase)-wild type or IDH-mutant due to the dramatic differences in prognosis and overall survival. Here, we investigated the genetic background of IDH1-mutant gliomas using the Catalogue of Somatic Mutations in Cancer (COSMIC) database. In astrocytoma patients, we found that IDH1 is often co-mutated with TP53, ATRX, AMBRA1, PREX1, and NOTCH1, but not CHEK2, EGFR, PTEN, or the zinc finger transcription factor ZNF429. The majority of the mutations observed in these genes were further confirmed to be either drivers or pathogenic by the Cancer-Related Analysis of Variants Toolkit (CRAVAT). Gene expression analysis showed down-regulation of DRG2 and MSN expression, both of which promote cell proliferation and invasion. There was also significant over-expression of genes such as NDRG3 and KCNB1 in IDH1-mutant astrocytoma patients. We conclude that IDH1-mutant glioma is characterized by significant genetic changes that could contribute to a better prognosis in glioma patients.

7.
J Med Chem ; 64(1): 566-585, 2021 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-33393767

RESUMO

The ability of G protein-coupled receptor (GPCR) kinases (GRKs) to regulate the desensitization of GPCRs has made GRK2 and GRK5 attractive targets for treating diseases such as heart failure and cancer. Previously, our work showed that Cys474, a GRK5 subfamily-specific residue located on a flexible loop adjacent to the active site, can be used as a covalent handle to achieve selective inhibition of GRK5 over GRK2 subfamily members. However, the potency of the most selective inhibitors remained modest. Herein, we describe a successful campaign to adapt an indolinone scaffold with covalent warheads, resulting in a series of 2-haloacetyl-containing compounds that react quickly and exhibit three orders of magnitude selectivity for GRK5 over GRK2 and low nanomolar potency. They however retain a similar selectivity profile across the kinome as the core scaffold, which was based on Sunitinib.


Assuntos
Quinase 5 de Receptor Acoplado a Proteína G/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Animais , Domínio Catalítico , Bovinos , Humanos , Concentração Inibidora 50 , Inibidores de Proteínas Quinases/química , Relação Estrutura-Atividade
8.
Int J Mol Sci ; 21(21)2020 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-33142932

RESUMO

Rho GTPase signaling promotes proliferation, invasion, and metastasis in a broad spectrum of cancers. Rho GTPase activity is regulated by the deleted in liver cancer (DLC) family of bona fide tumor suppressors which directly inactivate Rho GTPases by stimulating GTP hydrolysis. In addition to a RhoGAP domain, DLC proteins contain a StAR-related lipid transfer (START) domain. START domains in other organisms bind hydrophobic small molecules and can regulate interacting partners or co-occurring domains through a variety of mechanisms. In the case of DLC proteins, their START domain appears to contribute to tumor suppressive activity. However, the nature of this START-directed mechanism, as well as the identities of relevant functional residues, remain virtually unknown. Using the Catalogue of Somatic Mutations in Cancer (COSMIC) dataset and evolutionary and structure-function analyses, we identify several conserved residues likely to be required for START-directed regulation of DLC-1 and DLC-2 tumor-suppressive capabilities. This pan-cancer analysis shows that conserved residues of both START domains are highly overrepresented in cancer cells from a wide range tissues. Interestingly, in DLC-1 and DLC-2, three of these residues form multiple interactions at the tertiary structural level. Furthermore, mutation of any of these residues is predicted to disrupt interactions and thus destabilize the START domain. As such, these mutations would not have emerged from traditional hotspot scans of COSMIC. We propose that evolutionary and structure-function analyses are an underutilized strategy which could be used to unmask cancer-relevant mutations within COSMIC. Our data also suggest DLC-1 and DLC-2 as high-priority candidates for development of novel therapeutics that target their START domain.


Assuntos
Proteínas Ativadoras de GTPase/genética , Proteínas Ativadoras de GTPase/metabolismo , Neoplasias Hepáticas/genética , Proteínas Supressoras de Tumor/genética , Sequência Conservada , Evolução Molecular , Proteínas Ativadoras de GTPase/química , Humanos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Mutação , Transdução de Sinais , Homologia Estrutural de Proteína , Relação Estrutura-Atividade , Proteínas Supressoras de Tumor/química , Proteínas Supressoras de Tumor/metabolismo
9.
Mol Pharmacol ; 97(6): 392-401, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32234810

RESUMO

G protein-coupled receptor (GPCR) kinases (GRKs) play a key role in terminating signals initiated by agonist-bound GPCRs. However, chronic stimulation of GPCRs, such as that which occurs during heart failure, leads to the overexpression of GRKs and maladaptive downregulation of GPCRs on the cell surface. We previously reported the discovery of potent and selective families of GRK inhibitors based on either the paroxetine or GSK180736A scaffold. A new inhibitor, CCG258747, which is based on paroxetine, demonstrates increased potency against the GRK2 subfamily and favorable pharmacokinetic parameters in mice. CCG258747 and the closely related compound CCG258208 also showed high selectivity for the GRK2 subfamily in a kinome panel of 104 kinases. We developed a cell-based assay to screen the ability of CCG258747 and 10 other inhibitors with different GRK subfamily selectivities and with either the paroxetine or GSK180736A scaffold to block internalization of the µ-opioid receptor (MOR). CCG258747 showed the best efficacy in blocking MOR internalization among the compounds tested. Furthermore, we show that compounds based on paroxetine had much better cell permeability than those based on GSK180736A, which explains why GSK180736A-based inhibitors, although being potent in vitro, do not always show efficacy in cell-based assays. This study validates the paroxetine scaffold as the most effective for GRK inhibition in living cells, confirming that GRK2 predominantly drives internalization of MOR in the cell lines we tested and underscores the utility of high-resolution cell-based assays for assessment of compound efficacy. SIGNIFICANCE STATEMENT: G protein-coupled receptor kinases (GRKs) are attractive targets for developing therapeutics for heart failure. We have synthesized a new GRK2 subfamily-selective inhibitor, CCG258747, which has nanomolar potency against GRK2 and excellent selectivity over other kinases. A live-cell receptor internalization assay was used to test the ability of GRK2 inhibitors to impart efficacy on a GRK-dependent process in cells. Our data indicate that CCG258747 blocked the internalization of the µ-opioid receptor most efficaciously because it has the ability to cross cell membranes.


Assuntos
Indazóis/química , Paroxetina/química , Pirimidinas/química , Receptores Opioides mu/antagonistas & inibidores , Receptores Opioides mu/metabolismo , Animais , Western Blotting , Permeabilidade da Membrana Celular , Cristalografia por Raios X , Feminino , Células HEK293 , Humanos , Indazóis/farmacologia , Camundongos , Microssomos Hepáticos/efeitos dos fármacos , Microssomos Hepáticos/metabolismo , Estrutura Molecular , Pirimidinas/farmacologia
10.
ACS Med Chem Lett ; 10(12): 1628-1634, 2019 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-31857838

RESUMO

The ability of G protein-coupled receptor (GPCR) kinases (GRKs) to regulate desensitization of GPCRs has made GRK2 and GRK5 attractive targets for treating heart failure and other diseases such as cancer. Although advances have been made toward developing inhibitors that are selective for GRK2, there have been far fewer reports of GRK5 selective compounds. Herein, we describe the development of GRK5 subfamily selective inhibitors, 5 and 16d that covalently interact with a nonconserved cysteine (Cys474) unique to this subfamily. Compounds 5 and 16d feature a highly amenable pyrrolopyrimidine scaffold that affords high nanomolar to low micromolar activity that can be easily modified with Michael acceptors with various reactivities and geometries. Our work thereby establishes a new pathway toward further development of subfamily selective GRK inhibitors and establishes Cys474 as a new and useful covalent handle in GRK5 drug discovery.

11.
Biochemistry ; 58(13): 1709-1717, 2019 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-30830753

RESUMO

Lysosomal phospholipase A2 (LPLA2/PLA2G15) is a key enzyme involved in lipid homeostasis and is characterized by both phospholipase A2 and transacylase activity and by an acidic pH optimum. Divalent cations such as Ca2+ and Mg2+ have previously been shown to have little effect on the activity of LPLA2, but the discovery of a novel crystal form of LPLA2 with Zn2+ bound in the active site suggested a role for this divalent cation in regulating enzyme activity. In this complex, the cation directly coordinates the serine and histidine of the α/ß-hydrolase triad and stabilizes a closed conformation. This closed conformation is characterized by an inward shift of the lid loop, which extends over the active site and effectively blocks access to one of its lipid acyl chain binding tracks. Therefore, we hypothesized that Zn2+ would inhibit LPLA2 activity at a neutral but not acidic pH because histidine would be positively charged at lower pH. Indeed, Zn2+ was found to inhibit the esterase activity of LPLA2 in a noncompetitive manner exclusively at a neutral pH (between 6.5 and 8.0). Because lysosomes are reservoirs of Zn2+ in cells, the pH optimum of LPLA2 might allow it to catalyze acyl transfer unimpeded within the organelle. We conjecture that Zn2+ inhibition of LPLA2 at higher pH maintains a lower activity of the esterase in environments where its activity is not typically required.


Assuntos
Aciltransferases/metabolismo , Lisossomos/enzimologia , Fosfolipases A2/metabolismo , Zinco/metabolismo , Aciltransferases/química , Animais , Sítios de Ligação , Domínio Catalítico , Estabilidade Enzimática , Células HEK293 , Humanos , Concentração de Íons de Hidrogênio , Lisossomos/metabolismo , Camundongos , Simulação de Acoplamento Molecular , Fosfolipases A2/química , Ligação Proteica , Conformação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...